
E04 – Minimizing or Maximizing a Function

E04ZCF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E04ZCF checks that user-supplied routines for evaluating an objective function, constraint functions and
their first derivatives, produce derivative values which are consistent with the function and constraint
values calculated.

2 Specification

SUBROUTINE E04ZCF(N, NCNLN, NROWJ, CONFUN, OBJFUN, C, CJAC, OBJF,
1 OBJGRD, X, WORK, LWORK, IFAIL)
INTEGER N, NCNLN, NROWJ, LWORK, IFAIL
real C(NCNLN), CJAC(NROWJ,N), OBJF, OBJGRD(N), X(N),
1 WORK(LWORK)
EXTERNAL CONFUN, OBJFUN

3 Description

Routines for minimizing a function of several variables subject to general equality and/or inequality
constraints may require the user to provide subroutines to evaluate the objective function
F (x1, x2, . . . , xn), constraint functions ci(x1, x2, . . . , xn), for i = 1, 2, . . . , m, and their first derivatives.
E04ZCF is designed to check the derivatives calculated by such user-supplied routines. As well as the
routines to be checked (CONFUN and OBJFUN), the user must supply a point x = (x1, x2, . . . , xn)

T at
which the checks will be made.

To check the first derivatives of F , E04ZCF first calls OBJFUN to evaluate F and its first derivatives
gj =

∂F
∂xj
, for j = 1, 2, . . . , n at x. The components of the user-supplied derivatives along two orthogonal

directions (defined by unit vectors p1 and p2, say) are then calculated; these will be gT p1 and gT p2

respectively. The same components are also estimated by finite differences, giving quantities

vk =
F (x+ hpk)− F (x)

h
, k = 1, 2

where h is a small positive scalar. If the relative difference between v1 and gT p1 or between v2 and gT p2

is judged too large, an error indicator is set.

When n = 1 only p1 and v1 are generated.

Similar checks are made of whether components of the first derivatives

∂ci

∂xj

, i = 1, 2, . . . , m; j = 1, 2, . . . , n

(as calculated by CONFUN at x) are consistent with difference approximations to the same quantities.

4 References

[1] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N — INTEGER Input

On entry: the number n of independent variables in the objective and constraint functions.

Constraint: N ≥ 1.

[NP3390/19/pdf] E04ZCF.1

E04ZCF E04 – Minimizing or Maximizing a Function

2: NCNLN — INTEGER Input

On entry: the number m of constraint functions.

Constraint: NCNLN ≥ 0.

3: NROWJ — INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04ZCF is called.

Constraint: NROWJ ≥ max(1,NCNLN).

4: CONFUN — SUBROUTINE, supplied by the user. External Procedure

CONFUN must calculate the vector c(x) of nonlinear constraint functions and its Jacobian for a
specified n-vector x. If there are no nonlinear constraints (NCNLN = 0), CONFUN will not be
called by E04ZCF and CONFUN may be the dummy routine E04VDM. (E04VDM is included in
the NAG Fortran Library and so need not be supplied by the user. Its name may be implementation-
dependent: see the Users’ Note for your implementation for details.) If there are nonlinear
constraints, E04ZCF always calls CONFUN and OBJFUN together, in that order.

Its specification is:

SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE)
INTEGER MODE, NCNLN, N, NROWJ, NSTATE
real X(N), C(NROWJ), CJAC(NROWJ,N)

1: MODE — INTEGER Input/Output
MODE is a flag that the user may set within CONFUN to indicate a failure in the evaluation
of the nonlinear constraints.
On entry: MODE is always nonnegative.

On exit: if MODE is negative on exit from CONFUN, the execution of E04ZCF will be
terminated with IFAIL containing the negative value of MODE.

2: NCNLN — INTEGER Input
On entry: the number m of nonlinear constraints, as input to E04ZCF.

3: N — INTEGER Input
On entry: the number n of variables, as input to E04ZCF.

4: NROWJ — INTEGER Input
On entry: the first dimension of the array CJAC and the length of the array C, as input to
E04ZCF.

5: X(N) — real array Input
On entry: the vector x of variables at which the constraint functions are to be evaluated.

6: C(NROWJ) — real array Output
On exit: C must contain the NCNLN nonlinear constraint values, with the value of the jth
nonlinear constraint in C(j).

7: CJAC(NROWJ,N) — real array Output
On exit: CJACmust contain the Jacobian of the nonlinear constraint functions with the ith row
of CJAC containing the gradient of the ith nonlinear constraint, i.e., CJAC(i, j) must contain
the partial derivative of ci with respect to xj . If CJAC contains any constant elements, a saving
in computation can be made by setting them once only, when NSTATE = 1 (see below).

E04ZCF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04ZCF

8: NSTATE — INTEGER Input
On entry: NSTATE will be 1 on the first call to CONFUN by E04ZCF, and is 0 for the two
subsequent calls. Thus, if the user wishes, NSTATE may be tested within CONFUN in order
to perform certain calculations once only. For example, the user may read data or initialise
COMMON blocks when NSTATE = 1. In addition, the constant elements of CJAC can be set
in CONFUN when NSTATE = 1, and need not be defined on subsequent calls.

CONFUN must be declared as EXTERNAL in the (sub)program from which E04ZCF is called.
Parameters denoted as Input must not be changed by this procedure.

5: OBJFUN — SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F (x) and its gradient for a specified n-element vector
x.

Its specification is:

SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE)
INTEGER MODE, N, NSTATE
real X(N), OBJF, OBJGRD(N)

1: MODE — INTEGER Input/Output
MODE is a flag that the user may set within OBJFUN to indicate a failure in the evaluation
of the objective function.
On entry: MODE is always non-negative.

On exit: if MODE is negative on exit from OBJFUN, the execution of E04ZCF will be
terminated with IFAIL set to MODE.

2: N — INTEGER Input
On entry: the number n of variables as input to E04ZCF.

3: X(N) — real array Input
On entry: the vector x of variables at which the objective function is to be evaluated.

4: OBJF — real Output
On exit: OBJF must be set to the value of the objective function.

5: OBJGRD(N) — real array Output
On exit: OBJGRD must contain the gradient vector of the objective function, with
OBJGRD(j) containing the partial derivative of F with respect to xj .

6: NSTATE — INTEGER Input
On entry: NSTATE will be 1 on the first call to OBJFUN by E04ZCF, and is 0 on the two
subsequent calls. Thus, if the user wishes, NSTATE may be tested in order to perform certain
calculations only on the first call of OBJFUN – e.g., read data or initialise COMMON blocks.
Note that if there are any nonlinear constraints, CONFUN and OBJFUN are called together,
in that order.N

OBJFUN must be declared as EXTERNAL in the (sub)program from which E04ZCF is called.
Parameters denoted as Input must not be changed by this procedure.

6: C(NCNLN) — real array Output

On exit: unless the user sets MODE negative in the first call of CONFUN, C(i) contains the value
of ci(x) at the point given by the user in x, for i = 1, 2, . . . ,NCNLN. If NCNLN is zero, C is not
referenced.

[NP3390/19/pdf] E04ZCF.3

E04ZCF E04 – Minimizing or Maximizing a Function

7: CJAC(NROWJ,N) — real array Output
On exit: unless the user sets MODE negative in the first call of CONFUN, CJAC(i, j) contains the
value of the derivative ∂ci

∂xj
at the point given in X, as calculated by CONFUN, for j = 1, 2, . . . , n;

i = 1, 2, . . . ,NCNLN.

If NCNLN is zero, CJAC is not referenced.

8: OBJF — real Output
On exit: unless the user sets MODE negative in the first call of OBJFUN, OBJF contains the value
of the objective function F (x) at the point given by the user in X.

9: OBJGRD(N) — real array Output
On exit: unless the user sets MODE negative in the first call of OBJFUN, OBJGRD(j) contains the
value of the derivative ∂F

∂xj
at the point given in X, as calculated by OBJFUN, for j = 1, 2, . . . , n.

10: X(N) — real array Input
On entry: X(j), for j = 1, 2, . . . ,N must be set to the co-ordinates of a suitable point x at which
to check the derivatives calculated by CONFUN and OBJFUN. ‘Obvious’ settings such as 0 or 1,
should not be used since, at such points, incorrect terms may take correct values (particularly zero),
so that errors could go undetected. Similarly, it is preferable that no two elements of x should be
the same.

11: WORK(LWORK) — real array Workspace
12: LWORK — INTEGER Input

On entry: the length of WORK as declared in the (sub)program from which E04ZCF is called.

Constraint: LWORK ≥ 4×N+NCNLN +N×NROWJ.

13: IFAIL — INTEGER Input/Output
On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL < 0
A negative value of IFAIL indicates an exit from E04ZCF because the user has set MODE negative
in OBJFUN or CONFUN. The value of IFAIL will be the same as the user’s setting of MODE.
The checks on OBJFUN and CONFUN will not have been completed.

IFAIL = 1

On entry, N < 1,
or NCNLN < 0,
or NROWJ < max(1,NCNLN),
or LWORK < 4×N+NCNLN +N×NROWJ.

IFAIL = 2
The user should check carefully the derivation and programming of expressions for the derivatives
of F (x), because it is very unlikely that OBJFUN is calculating them correctly.

IFAIL = 2 + i, for i = 1, 2, . . . ,NCNLN
The user should check carefully the derivation and programming of expressions for the derivatives
of ci(x), because it is very unlikely that CONFUN is calculating them correctly. See Section 7.

E04ZCF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04ZCF

7 Accuracy

IFAIL is set to 2 if
(vk − gT pk)

2 ≥ h × ((gT pk)
2 + 1)

for k = 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
√

ε,
where ε is the machine precision as given by X02AJF.

IFAIL is set to 2+ i if a relation analogous to that given above holds for ci and its calculated derivatives.

8 Further Comments

The user-supplied routines CONFUN and OBJFUN are both called 3 times, unless NCNLN = 0 in which
case CONFUN is not called.

Before using E04ZCF to check the calculation of first derivatives, the user should be confident that
CONFUN and OBJFUN are calculating F and the ci correctly. The usual way of checking the calculation
of these function values is to compare values of F (x) and the ci(x) calculated by OBJFUN and CONFUN
at non-trivial points x with values calculated independently. (‘Non-trivial’ means that, as when setting
x before calling E04ZCF, co-ordinates such as 0 or 1 should be avoided.)

9 Example

The example problem has nine variables, finite bounds on six of the variables, four general linear
constraints, and fifteen nonlinear constraints.

The objective function is

F (x) = −x2x6 + x1x7 − x3x7 − x5x8 + x4x9 + x3x8

and the fifteen nonlinear constraint functions are

c1(x) =x2
1 + x2

6,
c2(x) =(x2 − x1)

2 + (x7 − x6)
2,

c3(x) =(x3 − x1)
2 + x2

6,
c4(x) =(x1 − x4)

2 + (x6 − x8)
2,

c5(x) =(x1 − x5)
2 + (x6 − x9)

2,
c6(x) =x2

2 + x2
7,

c7(x) =(x3 − x2)
2 + x2

7,
c8(x) =(x4 − x2)

2 + (x8 − x7)
2,

c9(x) =(x2 − x5)
2 + (x7 − x9)

2,
c10(x)=x2

3,
c11(x)=(x4 − x3)

2 + x2
8,

c12(x)=(x5 − x3)
2 + x2

9,
c13(x)=x2

4 + x2
8,

c14(x)=(x4 − x5)
2 + (x9 − x8)

2,
c15(x)=x2

5 + x2
9.

The example checks the gradients at two separate points.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04ZCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

[NP3390/19/pdf] E04ZCF.5

E04ZCF E04 – Minimizing or Maximizing a Function

* .. Local Scalars ..
real OBJF
INTEGER I, IFAIL, J, K, LWORK, N, NCNLN, NROWJ

* .. Local Arrays ..
real C(20), CJAC(20,9), OBJGRD(9), WORK(351), X(9)

* .. External Subroutines ..
EXTERNAL CONFUN, E04ZCF, OBJFUN

* .. Data statements ..
DATA NROWJ/20/, LWORK/351/

* .. Executable Statements ..
WRITE (NOUT,*) ’E04ZCF Example Program Results’

* Skip heading in data file
READ (NIN,*)
N = 9
NCNLN = 15

* Read in two points and check the derivatives at each point.
DO 20 K = 1, 2

READ (NIN,99999) (X(J),J=1,N)
IFAIL = 1

*
CALL E04ZCF(N,NCNLN,NROWJ,CONFUN,OBJFUN,C,CJAC,OBJF,OBJGRD,X,

+ WORK,LWORK,IFAIL)
*

WRITE (NOUT,*)
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,*) ’Derivatives probably correct at the point’
WRITE (NOUT,99998) (X(J),J=1,N)

ELSE IF (IFAIL.EQ.1) THEN
WRITE (NOUT,*) ’Incorrect parameter supplied to E04ZCF’
STOP

ELSE IF (IFAIL.EQ.2) THEN
WRITE (NOUT,*)

+ ’Probable error in derivative of objective function’
WRITE (NOUT,99998) (X(J),J=1,N)
WRITE (NOUT,*) ’The computed gradients are’
WRITE (NOUT,99998) (OBJGRD(J),J=1,N)

ELSE
I = IFAIL - 2
WRITE (NOUT,99997)

+ ’Probable error in derivative of constraint’, I,
+ ’ at the point’

WRITE (NOUT,99998) (X(J),J=1,N)
WRITE (NOUT,*)

+ ’The computed gradients of this constraint are’
WRITE (NOUT,99998) (CJAC(I,J),J=1,N)

END IF
20 CONTINUE

STOP
*
99999 FORMAT (1X,9F6.2)
99998 FORMAT (1X,1P,5e12.4)
99997 FORMAT (1X,A,I4,A)

END
*

SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE)
* .. Scalar Arguments ..

real OBJF
INTEGER MODE, N, NSTATE

E04ZCF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04ZCF

* .. Array Arguments ..
real OBJGRD(N), X(N)

* .. Executable Statements ..
OBJF = X(2)*X(6) - X(1)*X(7) + X(3)*X(7) + X(5)*X(8) - X(4)*X(9) -

+ X(3)*X(8)
OBJF = -OBJF
OBJGRD(1) = X(7)
OBJGRD(2) = -X(6)
OBJGRD(3) = -X(7) + X(8)
OBJGRD(4) = X(9)
OBJGRD(5) = -X(8)
OBJGRD(6) = -X(2)
OBJGRD(7) = -X(3) + X(1)
OBJGRD(8) = -X(5) + X(3)
OBJGRD(9) = X(4)
RETURN
END

*
SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,X,C,CJAC,NSTATE)

* .. Parameters ..
real ZERO, TWO
PARAMETER (ZERO=0.0e0,TWO=2.0e0)

* .. Scalar Arguments ..
INTEGER MODE, N, NCNLN, NROWJ, NSTATE

* .. Array Arguments ..
real C(NROWJ), CJAC(NROWJ,N), X(N)

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
* The zero elements of Jacobian matrix are set only once. This
* occurs during the first call to CONFUN (NSTATE = 1).

IF (NSTATE.EQ.1) THEN
DO 40 J = 1, N

DO 20 I = 1, NCNLN
CJAC(I,J) = ZERO

20 CONTINUE
40 CONTINUE

END IF
C(1) = X(1)**2 + X(6)**2
CJAC(1,1) = TWO*X(1)
CJAC(1,6) = TWO*X(6)
C(2) = (X(2)-X(1))**2 + (X(7)-X(6))**2
CJAC(2,1) = -TWO*(X(2)-X(1))
CJAC(2,2) = TWO*(X(2)-X(1))
CJAC(2,6) = -TWO*(X(7)-X(6))
CJAC(2,7) = TWO*(X(7)-X(6))
C(3) = (X(3)-X(1))**2 + X(6)**2
CJAC(3,1) = -TWO*(X(3)-X(1))
CJAC(3,3) = TWO*(X(3)-X(1))
CJAC(3,6) = TWO*X(6)
C(4) = (X(1)-X(4))**2 + (X(6)-X(8))**2
CJAC(4,1) = TWO*(X(1)-X(4))
CJAC(4,4) = -TWO*(X(1)-X(4))
CJAC(4,6) = TWO*(X(6)-X(8))
CJAC(4,8) = -TWO*(X(6)-X(8))
C(5) = (X(1)-X(5))**2 + (X(6)-X(9))**2
CJAC(5,1) = TWO*(X(1)-X(5))
CJAC(5,5) = -TWO*(X(1)-X(5))

[NP3390/19/pdf] E04ZCF.7

E04ZCF E04 – Minimizing or Maximizing a Function

CJAC(5,6) = TWO*(X(6)-X(9))
CJAC(5,9) = -TWO*(X(6)-X(9))
C(6) = X(2)**2 + X(7)**2
CJAC(6,2) = TWO*X(2)
CJAC(6,7) = TWO*X(7)
C(7) = (X(3)-X(2))**2 + X(7)**2
CJAC(7,2) = -TWO*(X(3)-X(2))
CJAC(7,3) = TWO*(X(3)-X(2))
CJAC(7,7) = TWO*X(7)
C(8) = (X(4)-X(2))**2 + (X(8)-X(7))**2
CJAC(8,2) = -TWO*(X(4)-X(2))
CJAC(8,4) = TWO*(X(4)-X(2))
CJAC(8,7) = -TWO*(X(8)-X(7))
CJAC(8,8) = TWO*(X(8)-X(7))
C(9) = (X(2)-X(5))**2 + (X(7)-X(9))**2
CJAC(9,2) = TWO*(X(2)-X(5))
CJAC(9,5) = -TWO*(X(2)-X(5))
CJAC(9,7) = TWO*(X(7)-X(9))
CJAC(9,9) = -TWO*(X(7)-X(9))
C(10) = X(3)**2
CJAC(10,3) = TWO*X(3)
C(11) = (X(4)-X(3))**2 + X(8)**2
CJAC(11,3) = -TWO*(X(4)-X(3))
CJAC(11,4) = TWO*(X(4)-X(3))
CJAC(11,8) = TWO*X(8)
C(12) = (X(5)-X(3))**2 + X(9)**2
CJAC(12,3) = -TWO*(X(5)-X(3))
CJAC(12,5) = TWO*(X(5)-X(3))
CJAC(12,9) = TWO*X(9)
C(13) = X(4)**2 + X(8)**2
CJAC(13,4) = TWO*X(4)
CJAC(13,8) = TWO*X(8)
C(14) = (X(4)-X(5))**2 + (X(9)-X(8))**2
CJAC(14,4) = TWO*(X(4)-X(5))
CJAC(14,5) = -TWO*(X(4)-X(5))
CJAC(14,8) = -TWO*(X(9)-X(8))
CJAC(14,9) = TWO*(X(9)-X(8))
C(15) = X(5)**2 + X(9)**2
CJAC(15,5) = TWO*X(5)
CJAC(15,9) = TWO*X(9)
RETURN
END

9.2 Program Data

E04ZCF Example Program Data
1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90
1.10 2.20 3.30 4.40 5.50 6.60 7.70 8.80 9.90

E04ZCF.8 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04ZCF

9.3 Program Results

E04ZCF Example Program Results

Derivatives probably correct at the point
1.1000E+00 1.2000E+00 1.3000E+00 1.4000E+00 1.5000E+00
1.6000E+00 1.7000E+00 1.8000E+00 1.9000E+00

Derivatives probably correct at the point
1.1000E+00 2.2000E+00 3.3000E+00 4.4000E+00 5.5000E+00
6.6000E+00 7.7000E+00 8.8000E+00 9.9000E+00

[NP3390/19/pdf] E04ZCF.9 (last)

